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Abstract 

   
Program transformation is a means to formally develop efficient programs from lucid 

specifications. A representative sample of the diverse range of program transformation research is 
classified into several different approaches based upon the motivations for and styles of constructing 
such formal developments. Individual techniques for supporting construction of developments are 
also surveyed, and are related to the various approaches.  
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1. Introduction  
 Program transformation has been advocated as the linchpin of an alternative programming 

paradigm in which the development from specification to implementation is a formal, mechanically 
supported process. The long range objective of this paradigm is to dramatically improve the 
construction, reliability, maintenance, and extensibility of software. Eloquent arguments along these 
lines may be found in [Balzer, Goldman & Wile 76], [Balzer, Cheatham & Green 83], [Bauer 76], 
and [Scherlis & Scott 83].  

 The current state of the art of program transformation is still some distance from supporting 
these ambitious goals, and research continues along a variety of diverse paths. The aim of this survey 
is to classify past and present trends in transformation research. Classification is done for 
approaches to program transformation, section 2, and for techniques for supporting program 
transformation, section 3. [Burstall & Feather 77] provides a much earlier survey of transformation 
research.  

2. Approaches  
 The common thread of all transformation research is the formal development from specification 

to implementation. Because it is formal it offers the potential for introducing extensive mechanized 
support into much of the programming process. Because it is a development it records the complete 
path from the descriptive nature of the specification (which outlines what is to be achieved), to the 
prescriptive nature of the program (which details how things are actually done).  

 Two distinct goals are evident in most of the transformation efforts to date: the goal of 
construction, in which the aim is to improve the process of programming, and the goal of 
comprehension, in which the aim is to improve understanding of programs and algorithms. While 
these goals are related, the bulk of transformation research can be divided on the basis of which of 
these goals is the primary objective. Manifestations of this division are apparent in the degree of 
mechanization that has been sought, and in the nature of the example developments that have been 
performed. The construction goal has inspired the building of transformation systems to experiment 
with the mechanically assisted development of a broad range of programs. In contrast, the 
comprehension goal has inspired more hand-conducted investigations into explaining and 
understanding complex algorithms, and has had a lesser emphasis on realizing the techniques in any 
mechanical form.  

 Work that strives toward the comprehension goal is described in section 2.4. The other category 
(whose goal is construction), is further subdivided, forming its subcategories by comparing the 
varieties of transformational approaches with traditional compilation. Just as compilation develops 
efficient code from source programs, transformation develops efficient programs from 
specifications. Traditional compilation is characterized by the following key restrictions:  

• Compilation is automatic, that is, once begun the process continues without any additional 
input from the programmer, and the product of the process is ready for execution.  

•  The source language is limited to be that which a compiler can “cover”, that is, any 
program that is legal to express in the language should be compiled satisfactorily.  

•  Compilation begins with the source program only, and needs no advice on how to proceed.  
By relaxing combinations of these restrictions in certain ways we get the major subcategories of 

transformation research aiming towards the construction goal. The identifiable subcategories are:  
•  Extended Compilation, characterized by permitting advice and partially relaxing the limits 

on the source language. That is, the transformation system accepts not only the source 
program, but also guidance on how to do the transformation. The source language is 
extended, taking advantage of the additional guidance to permit use of more expressive 



constructs. Generally, however, such extensions remain fairly conservative, in that although 
there is a willingness to live with the possibility of some esoteric combinations of language 
constructs that cannot be satisfactorily compiled, most expected uses of this extra expressive 
power should be handled by the compiler. Note that by retaining the restriction that 
compilation be automatic, the results of transformation are ready for execution (in particular, 
will not need to be further transformed), and all guidance must be given at the very beginning 
along with the program. This category is explored in section 2.1.  

•  Metaprogramming, characterized by relaxing the restrictions that the process be automatic 
and that it take no advice. Now the transformation process may involve significant interaction 
between system and programmer, meaning that advice can be provided both at the start of, 
and during, transformation. As a result, coverage of the specification language can be 
attained without significantly limiting the constructs of that language. Transformation is best 
viewed as a manipulation of objects which are specifications or programs (there is no clear 
distinction between the two). Transformation systems execute the manipulations, guided by 
the advice from the programmer. Such guidance may be expressed as a structured series of 
commands to the transformation system, that is, advice takes the form of a program to cause 
the transformation system to manipulate its data objects, which are themselves specifications 
and programs. Hence the metaprogramming viewpoint. Drawing this analogy with 
programming has been a motivation for advances within this category of transformation 
research, considered in section 2.2.  

•  Synthesis, characterized by relaxing all language restrictions while attempting to retain the 
automatic and unadvised nature of compilation. To achieve this, the transformation system 
represents, manipulates and automates as much as possible of the knowledge that goes into 
constructing the development. Artificial Intelligence techniques are often applied to do this. 
In contrast to traditional compilation, the source language is left completely unrestricted, and 
the resulting language coverage that these mechanisms actually achieve is quite sparse. A 
specification may be expressed in a style that gives no hint of a reasonable efficient 
implementation. Thus the need to synthesize the program. Because the reasoning behind 
synthesis is captured within the system, advice from the programmer may be directions to the 
reasoning process, in addition to more specific directions of which transformation to apply 
next. Section 2.3 covers this approach to transformation.  

2.1 Extended Compilation  
 This approach is characterized by being like traditional compilation in requiring that the 

transformation process be fully automatic, that is, once begun requires no further input from the 
programmer, and results in a program suited for execution without further examination or 
transformation, but differs from compilation by accepting advice on how to do the transformation 
(e.g., choices of data representations), and relaxing slightly the expectation that all legal 
specifications can be successfully transformed into efficient programs.  

 Since all advice must be given at the start of the transformation process, the programmer 
providing that advice must be able to express all of it at once, and anticipate in advance the 
interdependencies among those pieces of advice. This limits the degree to which specification 
languages may be extended beyond programming languages and yet still be amenable to this kind of 
transformation.  

 Research that fits in this category tends to be close to the boundary of current compiler 
capabilities. High-level languages are conservatively extended with a few additional constructs, 
some but not all uses of which can be transformed automatically given some initial advice. 
Generally, extended compilation is not able to radically restructure the algorithmic nature of the 



specification. Hence writing specifications is very much like programming, except the specification 
languages are somewhat more expressive than programming languages.  

 By following this conservative approach to transformation, such research often has the 
considerable benefit of being immediately applicable. The researchers can and do use their systems 
to support their day-to-day programming. In contrast, the other, more ambitious, transformation 
approaches tend to be some considerable distance from the point of cost effectiveness.  

 Specifications in the extended compilers' carefully enhanced specification languages typically 
offer a wide range of choices of implementations, even while preserving the overall algorithmic 
nature implicit in the given specification. Conventional compilation tends to deal with simpler and/or 
better understood choices. For example, dead-code removal is clearly beneficial, so a compiler need 
only be concerned with doing it, not whether to do it; register allocation is done independently of 
(after) other optimizations, so the compiler need focus only on this one aspect at one time. In 
contrast, extended compilers may need to make explicit the space of all optimization choices so as to 
be able to evaluate and compare the efficiency of alternatives.  

2.1.1 SETL 
This long-running project at the Courant Institute of New York University [Dewar et al 81] has 

served as the context for a wide variety of transformation research. Their very high-level 
programming language, SETL, has syntax and semantics based on standard set-theoretic dictions 
of mathematics. SETL programs can always be executed; however, naive execution of programs that 
make liberal use of the high-level language features may be very inefficient. The SETL compiler has 
been built to compile SETL programs into efficient interpretable code or machine code. Used in this 
manner, the SETL compiler would fall into the category of a traditional compiler, albeit a very 
sophisticated one. Pertinent to the theme of extended compilation is the optimizer (described in 
[Freudenberger et al 83]) that lies at the heart of the SETL compiler. The optimizer improves SETL 
programs in the following ways: (1) run-time type checking is removed as much as possible by 
compile-time determination of variable types (SETL has dynamic typing, and makes heav:y use of 
overloaded operators); (2) efficient data-representations are chosen for SETL structures; (3) copying 
of objects is eliminated when it can be determined to be safe to transfer pointers rather than copies of 
values (SETL has sharing and side effects); and (4) classical “low-level” optimizations (common-
sub expression elimination, etc) are performed. All the above can be done entirely automatically, i.e., 
compiled in the conventional sense.  

 This research crosses over into the world of extended compilation by allowing the programmer 
to provide declarations to direct the choice or representations ror data structures. These declarations 
are made in a “representation sublanguage.” which can be used to express a wide range of data 
structuring techniques. These do not cause the optimizer to make any significant change to the 
algorithmic form of the program; they merely direct its selection of data representations to support 
the provided algorithm. The representation sublanguage and its use is described in [Dewar et al 7g], 
along with some ideas on how to use global analysis1 to automate the selection of efficient data 
structures. Research into more radical algorithmic changes has also been done in the SETL 
framework, and will be mentioned later.  

2.1.2 RAPTS 
Paige's RAPTS (Rutgers Abstract Program Transformation System) is a running transformational 

programming system that does source-to-source transformations on high-level SETL programs 
(Section 2.1.1). His overall approach and views are outlined in [Paige 83] and [Paige 84].  

                                                 
1 Analysis is also used in [Wegbreit 76] to single out those portions of the specification appropriate for optimization. 



 RAPTS places severe restrictions on the SETL specifications that it can deal with, and relies 
upon a small amount of advice from the programmer to guide the transformation process. As a 
result, RAPTS can transform very high-level specifications into efficient code, introducing and 
radically altering algorithmic structures as it does so. The transformation process is divided into the 
following main stages: (1) introduction of computability; the original specification may be 
expressed in terms of infinite computations and infinite data objects --this stage transforms the 
specification into terminating computations on finite data representations, (2) introduction of 
search strategy; applicative expressions of searches are transformed into imperative algorithms 
committed to particular algorithmic search strategies (e.g., depth-first search); and (3) 
improvements to the chosen strategy; these are achieved by dynamic expression formation, formal 
differentiation (Section 3.2.3.2.3), loop fusion (Section 3.2.3.1.1), and dead code elimination. Once 
at this level, the remaining transformations are in the domain of the SETL optimizer. Paige remarks 
that having the record of how this level was achieved (through transformation from much higher-
level stages) is of considerable utility, since it relieves the optimizer of rediscovering much of the 
information through intricate control flow analysis, and since the preceding transformations have 
ensured the absence of certain inefficiencies that would otherwise have to be considered (e.g., 
unnecessary copying).  

 RAPTS derives a complexity formula for the specifications that it transforms. This capability 
is uncommon in transformation research, and Paige argues strongly for its utility. Also uncommon is 
the very high-level nature of the specifications that RAPTS can deal with while still remaining a 
highly automated system.  

2.1.3 TAMPR  
Boyle's TAMPR (Transformation-Assisted Multiple Program Realization) system provides a 

variety of support for programming in FORTRAN at the Argonne National Laboratory, [Boyle 79] 
and [Boyle 84]. Applications include small language extensions (e.g., complex and quaternion 
abstract data types, automatic declaration of undeclared variables), optimizations (e.g., loop 
unrolling, unfolding of some subroutine calls), conversions (e.g., single to double precision, multi-
dimensional arrays to one-dimensional ones), and miscellaneous support (e.g., instrumenting 
programs, recognizing inherent program structure). The modest nature of the tasks enables TAMPR 
‘stransformation process to be entirely automatic. In addition to transformation within the 
FORTRAN language, TAMPR has also been applied to help in FORTRAN-to-Pascal translation, 
and in converting the bulk of the TAMPR system itself from its (almost) pure applicative LISP 
version into FORTRAN (which runs faster than the compiled LISP form on the same machine). This 
latter application demonstrates the feasibility of the approach on moderately large programs (1300 
lines, 42 functions, converted into 3000 lines of FORTRAN). Boyle stresses that approaching these 
tasks by means of program transformation encourages organizing it in a modular fashion, with many 
consequent benefits. This issue will be discussed later, in Section 3.2.4.1.  

2.2 Metaprogramming  
 In this approach, the transformation of a specification into a program is done interactively, by 

having the transformation system be guided by the programmer. As a result, ambitious specifications 
(that make liberal and widespread use of very high-level constructs, often requiring radical 
algorithmic changes to obtain tolerable efficiency) can be tackled --much more ambitious than is 
possible in the extended compilation approach. This raises the level for expressing specifications 
well beyond that of high level programming languages. However, the guidance that the programmer 
must provide to the transformation process becomes the critical aspect of this approach. For all but 



the most trivial of tasks, the guidance itself is relatively intricate, and has to be constructed and 
refined through experimenting with its effect on the specification.  

 The record of the guidance provided by the programmer is now more complex than merely 
advice expressed in terms of the initial specification, as was the case in the extended compilation 
approach. Research following this approach has tended to draw an analogy between the 
transformation process and programming: the guidance that directs transformational development is 
like a program, executed on a transformation machine, whose data is the specification being 
transformed. In transforming specifications that are larger or more complex than the simplest “toy” 
problems, the transformational developments may be quite lengthy. This is because the 
transformation steps tend to be low level, in that they make only small manipulations to the 
specification and so a long sequence of such steps is required to build the entire development. This 
not only renders construction of the development quite tedious, but also means that the linear record 
of transformation applications is difficult to comprehend and lacking in robustness when replayed 
for maintenance purposes. To overcome these problems, researchers have sought to: (1) structure 
the transformational developments (in this case, the metaprograms), and (2) mechanize the lower 
level aspects of applying transformations. The desire to impose structure cuts across the 
transformational approaches; we will also see its prominence in developments for comprehension 
(Section 2.4). Similarly, the adoption of mechanization to assist in the transformation process is a 
common desire (the extended compilation theme is clearly committed to this; much of the synthesis 
research has been directed to realizing automated systems). The goal is to achieve a symbiosis 
between the talents of a skilled human, who is better able to make the strategic development choices, 
and the mechanical abilities of the system to flawlessly carry out the numerous trivial low-level 
manipulations. In the systems constructed to date, the level of diction between human and system 
has remained quite low. As a result, transformation done in this manner is still a tedious process, and 
the resulting development lacks the robustness necessary for successful application of the 
transformational paradigm for maintenance. Those researchers who have done metaprogramming-
style developments by hand have had the advantage of more flexibility, most notably in their 
introduction and use of sophisticated notations, but suffer the disadvantage of lacking mechanical 
support.  

 Having obtained a program that records how to transform the specification into an efficient 
program, such a (formal) record may serve the following purposes: (1) understanding the efficient 
program may be achieved by beginning with the (presumably lucid) specification and then studying 
the development, which gives an evolutionary view of how efficiency is introduced, and (2) 
maintaining the efficient program --when the program is to be changed, it is done by modifying the 
development (to adjust the efficiency characteristics without altering the functional behavior), or by 
modifying the specification and reperforming the development. In the latter case, the hope is that 
much of the previous development will be reusable. Again, the formal record of the development 
and the reliance upon programmer assistance enhance the feasibility of maintenance performed in 
this manner.   

2.2.1  ZAP  
Feather's ZAP system and language [Feather 82a] is based on the fold/unfold work of Burstall 

and Darlington (Section 3.2.1) on transforming applicative programs expressed in recursion 
equations. The ZAP system IS language is an (ad-hoc and relatively primitive) language for 
expressing transformational developments. ZAP is applied to several modest problems (the 
telegram problem, portions of a toy compiler, and a small text formatter [Feather 82b]). Each of 
these began with a computationally naive specification of significant size, and so the transformation 
process exercised the need to deal with issues of scale because the developments were quite lengthy.  



 Some higher level means of structuring the developments are applied informally, but not 
represented within the ZAP language. The calling structure of the specification's functions is used to 
suggest an overall strategy for efficiency improvement, where the elements of the strategy are 
applications of fusion, tupling, and generalization tactics (Section 3.2.3). The tactics are in turn 
expanded into sequences of transformations at the fold/unfold level. Expansion from strategy to 
tactics is done entirely by hand, and is not represented within the ZAP language nor supported by the 
system. Automated mechanisms provide some support for expanding tactics into the fold/unfold 
sequences. The most useful of these provides “pattern-directed transformation,” a means of 
describing the approximate form of the next stage of development, leaving the mechanism to 
discover the sequence of transformations that will effect the appropriate change. In addition, there 
are heuristics that suggest plausible case breakdowns and recursions.  

 The issues in applying program transformation to the maintenance of software is discussed 
in [Darlington & Feather 80], where the ZAP system is applied to retransform some modified small 
scale specifications.  

2.2.2 HOPE metalanguage  
 Darlington pursues the idea of a language for recording developments and draws inspiration 

from the LCF project2 [Darlington 81a]. The applicative programming language HOPE is adopted as 
the metalanguage in which to express developments. Starting with a small set of basic 
transformation rules, HOPE's structure-defining and manipulating facilities are used to express 
higher level transformation rules in terms of lower level ones. Hierarchically composed rules, 
transformation “tactics” (e.g., merging loops, recursion to iteration), and (potentially) algorithmic 
paradigms (e.g., binary search) are all expressed as HOPE operators. The development is then a 
HOPE program that applies the appropriate operators to effect the desired transformation. Darlington 
has applied this approach to some transformational developments of small examples.  

 The structuring of design decisions has also been investigated by Sintzoff [Sintzoff 80]. He 
makes suggestions for hierarchically structuring program designs, demonstrated on some hand-
performed case-studies.  

2.2.3 POPART/Paddle  
 Wile's POPART system [Wile 82] supports experiments with developments, transformations, 

and other program manipulations. Pertinent to the metaprogramming theme is POPART's special-
purpose language Paddle, designed to be used to express the structure of developments [Wile 83]. 
As with the use of HOPE as a metalanguage, in Paddle one may compose transformations to build 
structured developments. Transformation rules are divided into four categories: (1) simplification 
rules (which are applied automatically after major changes), (2) conditioning rules (intended to be 
invoked automatically in preparation for major transformation steps, Section 3.2.1), (3) a catalogue 
of commonly useful rules (invoked by name), and (4) the Paddle program that is the development for 
the task.  

  In addition to expressing the subordinate structure, Paddle also provides for expressing the goal 
dependency structure of the development. (Examples of development goals themselves are: attain 
maximum efficiency, eliminate recursion, and merge adjacent loops iterating over the same 
structure.) Wile argues for the importance of recording such dependency, particularly to facilitate 
reuse of the development. For example, if two subgoals are recorded as being independent, and the 

                                                 
2 Where a metalanguage, MI., was developed to allow the writing or structured plans to assist in the proving or 

theorems about programs [Gordon et al 78]. The PRL program development system also provides mechanical support 
for constructing proofs, proofs in a form that may serve as programs [Bates & Constable 85] 



specification changes in such a way as to affect only one of them, it will be clear that the other 
subgoal can be reapplied without change. Paddle can record the following goal structures:  

• sequential dependency (goal A must be achieved before goal B),  
• independence (goal A may be achieved in parallel with goal B),  
• choice (goal A was chosen from a set of possible goals {A,B,...}, all of which supported the 

same overall goal),  
• conditionality (goal A need only be achieved if goal B could not be achieved), and  
• repetition (apply goal A to all instances of...).  

 
 The Paddle/POPART combination has been applied extensively to construct and apply 

transformational developments to a number of moderate-sized specifications (e.g., a text-
compression program and a package router, a small process control problem).  

2.2.4 CIP  
 The long-running CIP project (Computer-aided, Intuition-guided Programming), at the Technical 

University of Munich, has contributed much to the field of transformation, and references to various 
facets of their work occur throughout this survey. The methodology that they espouse for program 
development fits into this metaprogramming category. See [CIP 84] for a recent summary of the 
project, and extensive references.  

 They have a running prototype of a transformation system, and are in the process of using it to 
help implement a new transformation system which will provide the mechanical support for user-
directed transformational developments. The new system has been formally specified, and this is 
serving as the starting point for a transformational development of the implementation, [Partsch 84a] 
and [Horsch et al 85]. Their metalanguage for expressing developments, like HOPE and Paddle, 
permits the definition of more complex rules in terms of the elementary rules [Steinbruggen 82]. It is 
anticipated that the vocabulary of the metalanguage will be enriched as experience is gained from its 
use.  

2.3 Synthesis  
 The objective of the synthesis approach is to make transformation as automatic as possible 

without limiting the specification language in any way. To achieve these seemingly contradictory 
objectives, synthesis research must represent, manipulate, and automate as much as possible of 
the knowledge that goes into constructing a development.  

 As with metaprogramming, specifications may be expressed in a style that gives no hint as to any 
reasonably efficient programs (indeed, it is common to start with specifications that are in a non-
executable form). Synthesis must therefore tackle all the problems that are encountered in the 
metaprogramming theme, but instead of there being a skilled programmer exterior to the system to 
turn to for guidance, the transformation system itself must do deep reasoning about the development 
process. Such systems expend most of their effort in expanding and navigating through the space of 
possible development alternatives. Artificial Intelligence techniques (particularly those drawn from 
planning and theorem proving) are often applied to represent and organize such searches. The very 
ambitious nature of these goals has limited the success of automatic synthesis systems to very small 
tasks or within a very limited domain of tasks. Existing such systems should be seen as experimental 
vehicles for testing ideas, not as prototypes of future tools for support of software construction.  

 There is a place for interaction between a programmer and a synthesis-style transformation 
system, although now the advice is not expected to take the form of particular transformation 
applications (bare advice in this form would be hard to reconcile with the reasoning process being 
built up by the system) but rather would be of new implementation strategies, tradeoffs among 



existing ones, etc. An ideal system along these lines would converse with the skilled programmer in 
high-level terms about development goals and objectives.  

2.3.1 Manna & Waldinger  
 Manna and Waldinger were pioneers in this field, and have explored a variety of approaches to 

synthesis. Their efforts divide into those that organize the construction or the development 
around the rorm or the specification as it is manipulated toward a .program, and those that 
are rounded upon theoremproving techniques, in which the program emerges as a by-product of 
the theorem-proving effort.  

 Their efforts in the former direction, reported in [Manna & Waldinger 79] and [Waldinger 77], 
deal with small tasks expressed as relationships between inputs and outputs. Generally, synthesis 
begins with a mathematical description of the relationship, and may necessitate introducing 
conditionals, loops, recursion (including mutual recursion), and assignments to variables. The end-
products are programs in a LISP-like language. In conjunction with producing the program, their 
techniques also construct proofs of termination where appropriate. Examples include simple 
numerical programs (algorithms for computing the greatest common divisor starting from a non-
constructive definition), small searching and testing problems in the domains of lists and sets, and 
small “structure-changing” problems (e.g., finding the maximum element in an array, where 
changing the contents of the variable that is to hold the output is allowed, but changing the input 
array is forbidden). They have realized combinations of some of these abilities in automatic systems 
that naively explore the synthesis space in a backtracking manner.  

 Dershowitz [Dershowitz 85] continues in the same spirit to investigate the formation or 
iterative loops. His largest synthesis is of a partition problem (given an array and a position within 
that array, rearrange the elements so that each element at or to the left of that position is less than or 
equal to each element to the right of that position).  

 Manna and Waldinger's other efforts seek to apply the power and approaches of automatic 
theorem provers to the synthesis task. The program is formed in parallel with building a 
constructive-style proof that establishes the existence of an output satisfying the specification. The 
proof effort is used to direct the synthesis, and may employ traditional proof techniques (e.g., 
induction, generalization). Although their studies along these lines have not been embodied in an 
automatic system, they are close to the level of detail necessary for such mechanization. See [Manna 
& Waldinger 80] for details. Their most ambitious synthesis is of a unification algorithm, described 
in [Manna & Waldinger 81]. This synthesis is entirely hand performed, although it is done at a fine 
enough level of detail to consider the capabilities that would be required of a mechanical system to 
perform the development.  

2.3.2 PSI (PECOS & LIBRA / CHI)  
 The PSI program synthesis system [Green 77] was constructed at Stanford to develop and test 

ideas for supporting symbolic programming. The PSI system supported the acquisition of 
specifications and their development into efficient programs. The latter phase requires cooperation 
between two knowledge-based programs: PECOS, which generates implementations in a 
stepwise refinement fashion, and LIBRA, which efficiently directs PECOS through the search 
space of alternative refinements toward an efficient implementation.  

 PECOS [Barstow 79] operates with a large catalog of transformation rules about symbolic 
programming. Most of the catalog comprises refinement rules, which generally refine a data 
structure or abstract operation into a more concrete implementation (e.g., a sequential collection may 
be refined into a linked list); the catalog also contains property rules, which are applied to annotate 
the developing program with additional information, and query rules, which are applied to answer 



questions that arise during refinement (e.g., satisfaction of applicability conditions). These rules 
typically effect only very small changes, and hence a long sequence of rule applications may be 
required to develop a small specification into a program. The disadvantage of having to control 
search for these long sequences is offset by the advantages of enhancing the coverage and 
extensibility of the rule catalog. By isolating the individual programming decisions into separate 
rules, those rules can be combined in many different ways to yield a wide variety of 
implementations; an added rule may be combinable in many ways with existing rules. Barstow 
[Barstow 85] argues that experiments in the domains of elementary symbolic programming and 
graph representations suggest convergence toward a useful catalog of rules, that is, as successively 
harder tasks are transformed, fewer and fewer new rules need be added to the catalog to make 
possible the transformation of further tasks.  

 The PECOS style of synthesis has been hand applied to the development of a class of in-place 
sorting programs (bubble sort, sinking sort, quicksort, and mergesort) [Green & Barstow 78]. This is 
closely related to Darlington's development of the same programs (Section 2.4.1); however, here the 
emphasis is on explicating algorithm design principles and expressing them as refinement rules.  

 LIBRA, the other component of PSI's development phase, directs PECOS's expansion of and 
navigation through the search space of refinements, [Kant 83]. Since the space of alternative 
refinements is large (a development from specification to program may involve a long sequence of 
steps, and at each step along the way there may be a number of alternative refinements to consider), 
LIBRA is concerned with conducting the search for an efficient implementation in an efficient 
manner. LIBRA is provided with the initial specification, size and frequency notes about that 
specification (estimates of data structure sizes and probabilities of alternative branchings), a 
performance measure which it is to minimize (a polynomial in storage space and running time), and 
limits on resources that may be expended during synthesis (upper bounds on space and time). 
LIBRA follows a strategy of modified best-first search with lookahead, and employs a catalog of 
rules to embody search knowledge and analysis knowledge (for estimating the efficiency of partially 
refined programs). Some search knowledge rules are heuristics for improving the planning process 
independent of the refinement rules (e.g., to group related decisions together so as to reduce search 
and make cost tradeoffs more obvious), and some require knowledge of refinements (e.g., to identify 
plausible refinements out of a set of alternatives). Analysis knowledge rules are applied to estimate 
the cost of a partially refined program. Cost analysis is done incrementally in combination with the 
ongoing refinement process; two cost estimates are maintained, an upper bound (which is guaranteed 
to be achievable) and an “optimistic” lower bound, which represents the lower bound for 
implementations known to the coding rules, assuming no adverse interactions. (The PECOS/LIBRA 
combination does allow for synthesis to result in a program using multiple representations for the 
same data structure, and LIBRA takes into account the cost of representation changes.) LIBRA 
provides some semi-automatic facilities for extending its search and analysis rule base when PECOS' 
rule base of refinements is extended.  

 The PECOS/LIBRA combination has been applied to synthesize modest programs, including 
classification and retrieval programs, selecting data representations for a prime-number generating 
algorithm, and sorting. Two paradigms for combining PECOS and LIBRA have been tried. In the 
earlier paradigm, each time PECOS faced a choice, each refinement would be applied and the results 
passed to LIBRA for analysis and preferential ordering, after which PECOS would continue with the 
preferred alternative. Experiences with this paradigm are discussed in [Barstow & Kant 76]; briefly, 
the narrow channel of communication between the two components was found to lead to 
inefficiencies in the searching process. The second paradigm is the one described in the preceding 
paragraph: the tree of refinements under construction is shared between PECOS and LIBRA; LIBRA 



essentially directs the exploration, using PECOS as a “legal move generator”; see [Kant & Barstow 
81].  

 More recently, the approaches and techniques of the PSI system have been applied to construct a 
knowledge-based programming environment, called CHI, and to explore the creative aspects of 
algorithm design. Central to this environment is the wide-spectrum language V. For details, see 
[Green et al 81] and [Smith et al 85].  

2.3.3 Glitter  
 Fickas's experimental Glitter system resulted from his investigations into automating much of the 

development process from high-level specifications (written in a general purpose specification 
language) to efficient programs, [Fickas 82]. His approach is to make explicit, to formalize and to 
mechanize the planning aspects of development.  

The Glitter system comprises the following:  
•  a set of goal descriptors, used to express development goals (e.g., remove is a goal 

descriptor which, when associated with a construct and a context, describes the goal of 
removing all uses of the construct from the context);  

•  a catalog of methods that may be applied to achieve goals; these include conventional 
program transformations that manipulate the specification, and problem transformations that 
manipulate the planning process (e.g., refine an outstanding goal into a set of more 
manageable subgoals);  

•  a method applier that applies a method;  
•  a catalog of selection rules, used to direct the planning process by comparing competing 

methods in the context of the planning that has taken place so far; and  
•  a problem solver that finds methods to achieve goals, uses selection rules to order its search 

through those methods, and invokes the method applier to apply the methods it selects.  
 
 Ideally, the programmer's interaction with Glitter would be confined to providing development 

goals at timely intervals. In practice, the programmer is also required to provide more direction to 
the problem solver in the form of additional methods, justifications of applications of methods and 
selection rules, and explicit navigation through the development space.  

 Fickas has applied Glitter to a modest process control example (development of a controller for a 
postal package router).  

2.3.4 Operationalization  
 Mostow has considered the synthesis task in the case of specifications expressed in terms of 

data and activities not directly available to the implementation. He calls the development of an 
effective program from such a specification “operationalization.” This typically arises when the task 
is to implement a component that resides within, and interacts with, an environment; specification of 
that task may be in terms of data within the environment (which need not necessarily be directly 
accessible by the component) and may be of activities of the environment (which need not 
necessarily be under the direct control of the component).  

 His first system, FOO, interactively constructs operationalization-style developments. The 
development space is formalized in traditional AI terms as a problem space; FOO is equipped 
with a catalog of rules that encode operators to move within that space. The system interacts with a 
skilled programmer to direct the application of these rules. Using this, Mostow has operationalized 
individual heuristics of good play in the card game Hearts, and (for music) generation of a cantus 
firmus, a sequence of whole notes satisfying certain aesthetic constraints. These developments are 
detailed in [Mostow 81].  



 Mostow's follow-on system, BAR [Mostow 83], is designed to automate most of the search 
through the development space of operationalization. BAR makes the goal structure of 
operationalization developments explicit, and uses an AI-style means-ends analysis problem solver 
operating over this goal structure to automate the search. BAR has been applied to several of the 
developments done with FOO, and, although it still requires some interactive guidance from the 
programmer, it succeeds in vastly reducing the branching factor among alternatives within the 
development space.  

 There are several particularly interesting aspects to BAR’s operation. It automatically analyzes 
the transformation rules to determine their effects with respect to the operationalization goal space 
(over which the planner searches). Also, program transformation rules are encoded independently of 
the formulation of the problem space. Together these imply that further rules (both program 
transformations, and more domain knowledge) may be added without any modification to the 
problem-solver. Since operationalization developments involve transformation sequences dozens of 
steps long, and with several rules applicable at each step, the problem solver's search space is 
combinatorially explosive. To mitigate this, search is done first in an (automatically) abstracted 
space of goals and transformations to yield successful abstract plans, which may then be refined into 
the more detailed developments.  

2.4 Comprehension  
 The characterizing feature of this category is the goal of understanding complex programs and 

algorithms by developing them systematically from lucid specifications.  
 Generally, the kind of problem tackled in this manner is a concisely specifiable task for which 

there is an already known efficient algorithm of significant intricacy. The development is analogous 
to a constructive proof – not only does it convince the reader that the program does solve the task, it 
also demonstrates how it solves the task, by revealing the design decisions which lead to the final 
algorithmic form. Varying the design decisions during the course of the development may give rise 
to different algorithms to solve the same problem, thus exposing the relationships among these 
families of algorithms. These and other points are made in [Reif & Scherlis 83], in the discussion of 
the benefits of this type of research. Another motivation is to help in the verification of programs – it 
has been suggested that proofs of correctness be derived by proving the correctness of some high-
level version of the program, and applying correctness-preserving transformations to develop the 
efficient low-level program, [Gerhart 75] and [Broy & Bruckner 80].  

 It is important to stress that the objective of this style of research is not the discovery of new 
algorithms3 – usually the problems are well known, and have already received considerable attention 
(I.e., the known algorithm may have been analyzed for complexity and/or verified correct with 
respect to the specification).  

 Many of the problems that have been tackled in this fashion have been developments of quite 
intricate algorithms, and such research contributes to transformational expertise. Even though these 
developments are generally constructed by hand without any mechanized support, there are 
similarities between these efforts and those of the metaprogramming theme. Here, too, the 
transformational development is lengthy, to the degree where recording merely the linear sequence 
of transformations would be incomprehensible. Thus structuring becomes a necessity, and 
developments employ a rich set of dictions with which to express such structure.  

 Since there have been many developments in this style, space allows only a quick survey of a 
few of the more landmark ones that exemplify a variety of aspects.  

                                                 
3 Though this has occurred; see Sharir's strange sorting algorithm [Sharir 81].  
 



2.4.1 2.4.1. Families or sorting algorithms  
 An early result in this vein is Darlington's development or a family or sorting algorithms for lists 

and arrays (quicksort, merge, insertion, selection, exchange and bubble) from a single naive 
specification of sorting [Darlington 78]. The starting specification is in generate-and-test form, that 
is sorting is defined as the selection of an ordered member from all permutations of the input (a list 
of comparable objects). The overall structure of the development is to improve the efficiency of the 
permutation generator, and then to promote the selection (of an ordered member) into the generation. 
Varying the design decisions at this level gives rise to the family of sorting algorithms, and thus 
exposes their interrelationships. At the next level of detail, the transformations are organized around 
applications of key lemmas, generalizations, and goals of achieving certain recursive forms. These 
are revealed as the insightful points within these developments. At the lowest level of detail, the 
manipulations are done in the fold/unfold style of transformation (Section 3.2.1), which (apart from 
some use of notational extensions) is essentially at the level of detail of a transformation system. 
Development of families of sorting algorithms are also to be found in [Green & Barstow 78], and 
[Broy 83]. Other families of algorithms developed transformationally include transitive closure – 
[Schmitz 82], parsing and recognition –  [Partsch 83a] and [Scherlis 80], and graph algorithms – 
section 2.4.4.  

2.4.2 2.4.2. Schorr-Waite and Earley's recognizer -CIP  
 In the context of the CIP project (Section 2.2.4), the researchers have produced numerous and 

transformation-based developments of a variety of algorithms. Only the two most sophisticated 
developments that they have published to date are mentioned here.  

 The first is Broy and Pepper's development of the Schorr-Waite graph-marking algorithm [Broy 
& Pepper 82]. The starting point is a mathematical specification of the general problem (computing 
reflexive, transitive closure of a relation), the end point an efficient procedural program. The most 
notable aspects of this development are as follows:  

• The development is divided into major phases, based upon the various language levels 
through which the expression of an emerging algorithm progresses. These levels are initial 
mathematical specification -> depth-first-search recursive algorithm -> functional 
(applicative) version of the Schorr-Waite algorithm -> nonrecursive procedural program.  

• Abstract data types are used to express selective updating at the applicative level; this 
greatly facilitates reasoning and transformation of the graph pointer manipulations that lie at 
the heart of the algorithm.  

• A specially constructed and proven transformation rule is applied to convert the recursive 
procedure into an iterative program. This rule can be used to generate a variety of versions of 
the algorithm, and its application is one of the key steps in the development.  

• The idiom of embedding (a means of solving a special problem by considering a more 
general one; Section 3.2.3.1.3) is used repeatedly through the course of the development.  

 
 The second development, by Partsch, is of Earley's context-free recognition algorithm [Partsch 

84b]. The major phases of the development are conversions between forms of the specification, in 
a manner similar to Broy and Pepper's development. Partsch's presentation emphasises structuring. 
He gives an overview of the major steps of the development, identifying for each the goal and the 
individual transformations applied to achieve that goal. Informal commentary accompanies each 
step. Having established the main structure, he provides more detail of the individual transformation 
steps (at the level of detail of a machine-checkable proof). Partsch also provides a comparison with 
development of the same algorithm, including one by Scherlis [Scherlis80],who shares the same 
overall methodology.  



2.4.3 Evaluating linear recurrence relations - Pettorossi and Burstall  
 Pettorossi and Burstall [Pettorossi & Burstall 82] develop logarithmic-time algorithms for 

evaluation of homogeneous linear recurrence relations with constant coefficients. They do this by 
starting with a simpler, but analogous example, the Fibonnaci function. They first develop two 
different logarithmic-running-time algorithms for Fibonnaci. Each development is structured by 
breaking it into stages on the basis of the idiomatic effect of that stage of transformation 
(generalization, application of lemmas, tupling [Section 3.2.3.1.2], and simplification). Each stage is 
achieved by application of a sequence of fold/unfold manipulations. Development of an efficient 
program for the original problem, solving homogeneous linear recurrence relations, is then 
constructed by drawing analogies with the form of the Fibonnaci problem, and the idiomatic effects 
of the stages in its two developments.  

2.4.4 Graph algorithms - Reif and Scherlis  
 Reif and Scherlis [Reif & Scherlis 83] develop Hopcroft and Tarjan's depth-first-search 

algorithms for computing biconnectivity and strong connectivity in graphs. They do this by first 
developing a family of simple depth-first search algorithms. These developments, and the 
algorithms that result, are then used directly or by analogy in the later developments.  

 The transformation steps are often combined to achieve Scherlis’ “specialization” tactic (Section 
3.2.3.1.3); use is also made of a “finite closure” transformation and many modest lemmas expressing 
domain-specific knowledge. Sundry low-level simplifications and manipulations are interspersed 
among these steps.  

 Scherlis has a view of the development process as operating within a space of alternative 
evaluations of expressions. The task is to evaluate some expression (parameterized by its inputs). 
Typically, there will be many alternative ways to perform such an evaluation; the initial specification 
usually denotes a straightforward but inefficient one. Viewed in this manner, development becomes 
the discovery and selection of equivalent but more efficient evaluations.  

2.4.5 Garbage collection and compaction - SETL  
 Dewar, Sharir, and Weixelbaum [Dewar, Sharir & Weixelbaum 82] develop a variant of a known 

efficient garbage collection and compaction algorithm from an initial highlevel specification. The 
initial specification is a simple algorithm constructed to solve the problem without regard to 
efficiency. It and all successive versions are expressed in SETL, and as such are executable. The 
authors claim this to be an especially important property while the transformational process remains 
far away from full mechanization.  

 Their development is organized into a short sequence of major steps, each of which prepares 
for and/or applies some sophisticated transformation. The earlier transformations establish the 
overall algorithmic form of the final program. The later transformations optimize this algorithm in 
the manner of the SETL extended compiler (Section 2.1.1).  

 Within the SETL framework, the key transformations that introduce and modify the algorithmic 
form of the emerging program are: commitments to incremental computation, loop fusion (Section 
3.2.3.1.1), splitting of a single computation into substeps, and formal differentiation (Section 
3.2.3.2.3). Often the goal of applying one of these transformations motivates the preparatory 
application of one or more of the other transformations to get the program into a suitable form (Le., 
conditioning – Section 3.2.1). The authors make the claim that most of the transformations are 
routine, and hence that the development could be done largely automatically. One particular 
transformation step that splits apart a piece of the computation into two stages corresponding to 
“adjusting the pointers” and “moving the blocks” is singled out as perhaps requiring considerable 
insight. Its result embodies the essence of this family of garbage collection techniques, and although 



the step is justified by technical transformation reasons, they suggest this to be fortuitous, and feel 
this to be the major insightful step of the development.  

 Stylistically, this development differs slightly from the preceding ones. Here the starting 
specification is not as concise, and has more of a procedural flavor. The concerns addressed during 
development also exhibit more of a procedural character. Nevertheless, the means of structuring the 
development and the idioms used in doing so have analogies across all the developments in this 
approach.  

3. Techniques  
 In this section we consider some of the techniques that have been invented and applied to support 

the transformational development process. Support techniques are divided into the following 
categories:  

•  Mechanical assistance for effecting transformations is considered briefly in section 3.1.  
•  Lengthy developments are structured; a variety of structuring techniques are outlined in 

section 3.2.  
•  Special-purpose languages are used to express specifications and programs, transformational 

developments, and transformations themselves, section 3.3.  

3.1 Mechanical support - transformation systems  
 Program transformation, by formalizing the development process, is intended to make software 

development amenable to mechanical support. The current state of program transformation research 
is such that mechanization is not, in most instances, cost effective as a means of software production. 
However, many researchers have built systems as experimental vehicles to test certain aspects of 
their transformation ideas. Brief references to various transformation systems are to be found 
throughout this paper; for a more complete and detailed survey, see [Partsch & Steinbruggen 83].  

3.2 Structuring techniques  
 A common problem of most transformation efforts is the lengthy and low-level nature of 

developments. Structuring developments has long been recognized as essential for their construction, 
comprehension and maintenance, regardless of whether these activities are to be fully automatic (as 
in the extended compilation approach), semiautomatic (as in metaprogramming), or entirely manual 
(as in many of the comprehension goal developments). Identifiable structuring techniques that have 
been applied in developments include the following:  

•  Identifying certain transformation steps as pivotal can motivate the application of other 
transformations around those steps, section 3.2.1.  

•  The nature of the specification to be transformed, the specification language, and the target 
programming language, can be used to indicate an overall strategy for transformational 
development, section 3.2.2.  

•  The building blocks of a strategic development are transformation tactics, where a single 
tactic effects some particular kind of change to the specification undergoing transformation, 
section 3.2.3.  

•  Transformation catalogs can often be structured based upon the specification language, 
independent of the details of particular specifications, section 3.2.4.  

3.2.1 Pivotal transformations 
The fundamental idea of this structuring technique is to identify certain transformation steps as 

pivotal, and to organize the application of other transformations around such steps.  



 This phenomenon arises in the context of Burstall and Darlington's fold/unfold transformation 
method [Burstall & Darlington 77], used to transform applicative (side-effect-free) specifications 
expressed in a language of first-order recursion equations. Developments of even quite small 
specifications require the construction of very lengthy sequences of transformation applications. The 
transformations are selected from a small set of simple rules optionally extended with rewrite rules 
encoding domain knowledge. The most interesting simple rule is “fold”, whose application replaces 
an instance of the body of a function with a call to that function, and in many developments the 
application of a fold rule is the pivotal step. Burstall and Darlington took advantage of this in their 
experimental transformation system, making it automatically apply other transformations (in a naive 
backtracking manner) until a fold step can be performed, after which the system pauses to query the 
user on whether or not to continue with that development path. Some of the transformation rules (the 
abstraction rule that makes a structural reorganization, and domain rules that express associativity 
and commutativity of operators) are automatically applied only when needed to make a fold 
possible. This enables the system to semi-automatically perform numerous small developments. 
Darlington extended the system with the capability to introduce new functions (whose definitions 
are more complex than trivial aggregations of existing functions) in order to make a fold possible, a 
technique he called “forced folding” [Darlington 75, Darlington 81b]. This extension, similar to 
controlled generalization (section 3.2.3.1.3), widens the range of programs that can be developed 
with the aid of this system.  

 More generally, any transformation application that is identified as pivotal may be used as a goal 
to direct the search for, and the application of, other transformations. Balzer, in describing the 
interactive construction of a transformational development [Balzer 81], suggests that the user-
directed application of a transformation may serve as the goal whenever the transformation is 
inapplicable to the current state of the program, in which case the user is given the option of entering 
a subgoaling mode with the objective of applying other transformations to make possible the 
suspended transformation step. This idea, called “jittering” or “conditioning,” was continued by 
Fickas in the framework of his goal-directed transformations (Section 2.3.3).  

3.2.2 Transformation strategies  
 It is clear that the nature of the specification to be transformed, the specification language, the 

target programming language, and the efficiency requirements, may all influence the development 
from specification to program. Unfortunately, little is known about how to deal with all these issues 
at once in anything other than an ad-hoc manner.  

  Research that has addressed (but not solved) the problems at this strategic level includes:  
•  The structure of an applicative-Ianguage specification is used to suggest an overall strategy 

for efficiency improvement, where the elements of the strategy are applications of several 
transformation tactics, [Feather 82a].  

•  In an efficient implementation of a given specification, the optimal control structures and 
data structures may be mutually dependent. Guide-lines for intermixing the steps that focus 
on one or the other of control and data are outlined in [Partsch 83b].  

 It is often the case that an attempt at implementation (by transformation or otherwise) can lead to 
modification of the specification. This phenomenon is discussed in [Pepper & Partsch 80] and 
[Swartout & Balzer 82]. Again, almost nothing is known about how to deal with this, merely that it 
occurs.  

3.2.3 Transformation tactics 
The building blocks of a strategic development are transformation tactics, where a single tactic 

effects some particular kind of change to the specification undergoing transformation. The nature of 



the change can be described abstractly, that is, independently of the particulars of the specification 
that is being transformed, and a description of the effect of a tactical change is often shorter that the 
sequence of corresponding transformations that actually execute that change. The following classes 
of tactics are considered:  

• Tactics to introduce or alter the computation structure, section 3.2.3.1. 
• Tactics to introduce or alter the maintenance and retrieval of data, section  3.2.3.2.  
• Tactics to manipulate and implement abstract data types, section 3.2.3.2.4.  

3.2.3.1 Transformation tactics on computation structure  
 This first class of tactics comprises those that affect the computation structure of the 

specification.  
 These changes predominate in the transformation of applicative programs and expressions, 

where most of the transformation sequences are intended to alter the calling structure among 
functions and establish an efficient computation order. Several idiomatic structural changes have 
been identified and applied in developments. Those receiving the most widespread use (across 
several of the transformation approaches) are: fusion (section 3.2.3.1.1), tupling (section 3.2.3.1.2), 
generalization (section 3.2.3.1.3), and filter promotion (section 3.2.3.1.4). Removal of certain 
forms of computation (notably recursion and nondeterminism) is another recurrent tactic (section 
3.2.3.1.5, as is the precomputation of a program on some of its data (section 3.2.3.1.6).  

3.2.3.1.1 

3.2.3.1.2 

                                                

 Fusion 
Fusion is the merging of nested function calls (in the context of recursion equation programs) or 

consecutive loops (in the context of iterative programs), where the first function call / loop builds up 
a composite object which is used by the second function call / loop. When this is the case, it may be 
possible to merge the two function calls / loops into one and thus avoid constructing the intermediate 
composite object. (In simple cases, much of the efficiency improvement can also be obtained by lazy 
evaluation.) The following are some examples of the widespread use of fusion (also called 
composition and vertical jamming) to structure developments:  

• In the context of transforming applicative languages, fusion is one of the tactics mechanically 
supported by the ZAP system (section 2.2.1). In the same context, these are expressed as 
“second level transformation tactics” in the transformation metalanguage HOPE (Section 
2.2.2).  

• Descriptions of SETL transformational developments use loop fusion as an informal 
objective: [Sharir 82] and [Paige & Koenig 82] --they apply formal differentiation (Section 
3.2.3.2.3) to achieve fusion; this also occurs in the garbage collection algorithm development 
(Section 2.4.5). In a similar manner, CIP developments (Section 2.2.4) also use fusion as a 
development objective.  

Tupling  
 Whereas fusion merges nested function calls or loops, tupling merges parallel function calls or 

loops so that their independent computations may be performed collectively, and so that their 
common computations need not be repeated.  

 The research cited above for fusion also uses tupling as an objective to structure developments. 
In addition, the tupling tactic is used to describe transformations in the linear recurrence relation 
development (Section 2.4.3); tupling may save both computation time and memory when applied to 
functions that visit the same data structure [Pettorossi 77]4.  

 
4  Pettorossi consistently uses the term ·strategy· for what I am calling a ·tactic·. 



3.2.3.1.3 

3.2.3.1.4 

Generalization and specialization  
 Generalization is a technique to solve a problem by considering a more general one. It is 

commonly used in mathematics and computer science, and has broad application in transformational 
developments.  

• In the CIP group's developments, generalization (there called embedding) is applied 
frequently; its usual manifestation is the definition of a new function in terms of existing ones 
by the addition of further parameters or results [Bauer et al 77]. This occurs in both the 
developments cited in Section 2.4.2.  

• Darlington implemented some simple forms of automatic generalization in his transformation 
system extensions (Section 3.2.1); his mechanism indiscriminately proposes generalizations 
of intermediate expressions to be made into new functions, querying the programmer on 
whether or not to pursue their development [Darlington 81b].  

• Manna and Waldinger also implemented some automatic generalizations in their synthesis 
systems (Section 2.3.1); their mechanism tries to detect when two intermediate goals (in the 
form of expressions to be computed) are both instances of a more general goal, in which case 
their system then seeks to synthesize a program to solve that generalized goal. Similarly, 
Wegbreit uses the objective of matching a goal and subgoal (so as to achieve recursion) to 
dictate the precise generalization to make the match possible [Wegbreit 76] (akin to 
Darlington's use of “fold” as a pivotal step to direct formation of new functions section 
3.2.1).  

•  Wand has a different technique for deciding when and how to generalize – it is done 
specifically to introduce “continuations” (data structures representing the future course of 
computations) [Wand 80].  

 Specialization is in some ways the complement of generalization. Its idea is to take advantage of 
the context in which some value is being computed to tailor that computation to the context, with the 
objective of realizing a more efficient computation of the same value.  

 Scherlis makes explicit use of specialization in the construction and explanation of developments 
(Section 2.4.4), and has formulated a set of transformation rules (akin to the fold/unfold rules of 
Burstall and Darlington --Section 3.2.1) whose applications may be composed to achieve 
specialization [Scherlis 81].  

Filter Promotion  
Filter promotion (also called operator incorporation) is potentially applicable to a 

specification or a portion of a specification in “generate and test” form. Its effect is to merge the 
filter testing into the generation process, and it is thus a special case of fusion. In some cases it may 
improve efficiency dramatically, by guiding the generation process and by performing early testing 
(and rejection where appropriate) of whole classes of partially generated items.  

•  A canonical example of filter promotion is the derivation of conventional sorting algorithms 
from the specification of sorting as “generate all permutations of the input and select an 
ordered one.” For an example, see Darlington's development (Section 2.4.1).  

•  Bird's choice of notation in an applicative language setting [Bird 84] tends to make 
opportunities for promotion more discernible, and may ease the definition and application 
of transformations that achieve promotion.  

•  Specification languages with a procedural flavor often provide convenient notations for 
defining generators and filters (for example, the Kestrel group's V language, Section 2.3.2, 
and ISI's Gist language, Section 3.2.4.2). When the generator and filter are separated by 
intervening statements, propagation is used to push the filter across those statements towards 
the generator.  



 

3.2.3.1.5 

3.2.3.1.6 

3.2.3.2.1 

Removal 
Instances of forms of computation that are convenient in specification or intermediate stages in 

development, but can typically be replaced by lower-level more efficient code, are often used as 
goals for removal.  

 Removing recursion has been studied for some considerable time, for example, the schema-
based approach of Darlington and Burstall replaced some instances of recursion with iteration 
[Darlington & Burstall 76]. (Note: this is not the same as their fold/unfold method, which remained 
within the recursive language level.) Many CIP developments (Section 2.2.4) have continued 
through to the procedural level, emphasizing recursion removal along the way.  

  Removing nondeterminism (implicit backtracking) can lead to major efficiency 
improvements. The savings can be achieved if it is possible to formulate simple tests that predict, at 
nondeterministic choice points, which choices lead to failure, and thus avoid the expense of going 
down those paths and having to backtrack later. This is done for improving programs written as 
goals in a space generated by sets of condition-action pairs [Sintzoff 76], for incremental 
construction of nondetermistically defined sets (in SETL developments -section 3.2.3.2.3, [Sharir 
82]), for elimination of nondeterministic activity pruned by constraints (in the Gist language – 
section 3.2.4.2, [Balzer 81] and [London & Feather 82]) and as a prerequisite to other 
transformations (in CIP developments – section 2.4.2, [Partsch 84b]).  

Precomputation  
  When some but not all of the data to be given to a program is known in advance, the program 

may be partially processed with that known data to give a “residual” program which can be run later 
on the remaining data.  

  This goal is often called partial evaluation. Ershov prefers the term mixed computation, and 
has investigated its achievement through program transformation, studying compilation as a source 
of examples. Using program transformation to effect the changes (as opposed to applying partial 
evaluator mechanisms of a fully-automatic nature) offers more scope for radical changes and 
improvements, however requires programmer intervention. In this use, the goal of precomputation is 
a transformation tactic. Similar studies are reported in [Jorring & Scherlis 86].  

3.2.3.2 Transformation tactics on data  
  Another class of transformation tactics are those that seek to affect the maintenance and retrieval 

of data. Three tactics for improving efficiency of data maintenance are memoizing (section 
3.2.3.2.1), in which dynamically computed results are saved for future retrieval; tabulation (section 
3.2.3.2.2), in which intermediate computations are carefully ordered to lead toward the goal while 
avoiding recomputation and minimizing storage; and formal differentiation (section 3.2.3.2.3), in 
which results that depend on changing data are incrementally maintained as those changes take 
place. Finally, manipulations of abstract data types have also been applied as a tactic in 
developments (section 3.2.3.2.4).  

Memoizing  
 Memoizing avoids recomputation of expressions by storing the results of evaluations the first 

time they are computed, and retrieving the stored values upon subsequent requests for the same 
computation. Function calls are usually chosen as the points for memoizing, as in Michie's “memo 
functions” [Michie 67]. Mostow and Cohen consider memoizing in a non-applicative context, where 



stored results may be invalidated over time, and try to identify what is appropriate to memoize and 
when [Mostow & Cohen 85].  

3.2.3.2.2 

3.2.3.2.3 

3.2.3.2.4 

                                                

Tabulation 
Tabulation is a specialized form of memoizing where the context is a goal of computing a single 

result or table of results. Computation of the intermediate results to reach that goal may be analyzed 
and reordered to reduce storage space as well as minimize unnecessary recomputation.  

Bird [Bird 80] studies tabulation in a purely applicative framework and identifies three different 
types. The first is when the recursive calling structure (“dependency graph”) exhibits uniformity, 
which can be exploited to optimize the storage requirements.5 The second is used when the calling 
structure is not uniform, but can be embedded in a uniform structure (essentially, generalizing the 
function being computed). The third is the default form of tabulation that avoids recomputation of 
results but may be expensive in terms of storage.  

Formal differentiation  
 Formal differentiation aims only to maintain computed results incrementally, as the values upon 

which they depend gradually change. This tactic, also known as finite differencing, is a 
generalization of strength reduction and iterator inversion [Earley 76]. In the SETL framework 
(Section 2.1.1), Paige, Koenig, and Sharir have studied the theory and application of this tactic quite 
deeply; see, for example, [Paige & Koenig 82] and [Sharir 82].  

 Paige's implemented system performs formal differentiation on SETL programs to efficiently 
compute a wide variety of set expressions. Paige uses estimates of costs of SETL operations (union, 
intersection, addition/deletion of single elements, set retrievals, etc.) to determine when formal 
differentiation will realize a speedup. While Paige appears to favor a bottom-up approach to 
extending the compilation process (Section 2.1.2), Sharir has studied how formal differentiation can 
be applied at the higher levels of specification, where it may be used to radically alter the structure 
of the algorithm. He has shown its use for loop fusion and for deriving deterministic algorithms for a 
class of nondeterministic problems (classes of nondeterministic searches over powersets), for 
example, transitive closure of a directed graph.  

Transformations on abstract data types  
 Abstract data types provide encapsulation and abstraction in specifications and programs. 

Substituting appropriate concrete representations for abstract data types permits the separate local 
optimization of these constructs. More radical improvements become possible if aggregations of 
abstract data types can be formed and optimized as a whole. The encapsulations provided by abstract 
data types serve as useful notions around which to structure development.  

 Transformations for optimizing individual abstract data types and for altering their boundaries 
are outlined in [Wile 81], and their use is demonstrated through the development of heapsort. Many 
of the CIP developments manipulate abstract data types and use them in structuring (section 2.4.2). 
Scherlis also has accumulated a set of type transformations [Scherlis 85], which have been applied in 
development of a simple compiler [Jorring & Scherlis 86].  

 
5 This seems to be related to the tupling tactic, Section 3.2.3.1.2, in which uniform dependency graphs may be used 

to group together several previously separate computations in such a way that evaluation proceeds using only that group 
of values, and without the need to recompute them later. 



3.2.4 Structuring the transformation catalog  
 Many approaches to transformation employ a large catalog of transformations, the canonical 

example of which is [Standish et al 76]. The focus of this section is means for structuring such a 
catalog.  

3.2.4.1 Stages  
 The transformation process is divided into successive stages, each of which has some limited 

purpose. During any single stage, only a readily identifiable and/or precomputed subset of the 
catalogue of transformations will be potentially applicable.  

 Boyle (Section 2.1.3) decomposes the transformation task in a top-down fashion, into a sequence 
of small stages. The higher level decompositions are between major language levels (e.g., pure 
applicative LISP -> recursive FORTRAN -> FORTRAN 66). These language levels are decomposed 
further, until each stage is relatively trivial (e.g., renaming duplicate lambda-variables). The set of 
transformations applicable at each stage is small, and is applied exhaustively; essentially, each stage 
converts the specification into a new canonical form.  

3.2.4.2 Language constructs as foci  
 For some specification languages, organizing the transformation catalogue around the language 

constructs may provide a useful index into the catalogue, provided that developments can be 
organized around the instances of language constructs in the specification.  

 Most of the Irvine program transformation catalog [Standish et al 76] is structured in this 
manner, with categories of transformations for dealing with assignments, gotos and labels, 
conditionals, etc. These categories are all based on programming-level constructs. The same 
structuring may also be achieved with categories based on high-level specification constructs. This is 
done for the ISI group's specification language Gist, which includes language constructs for 
expressing non determinism and constraints, arbitrary reference to past and future computation, 
unlimited access to global information, etc. Transformational developments of Gist specifications 
are generally organized around incremental removal of uses of these constructs, [London & Feather 
82].  

3.3 Language support  
 The languages for expressing specifications, programs, transformations, and developments have 

a major influence on the style and range of applicability of transformation research.  

3.3.1 Languages for specifications and programs  
The languages used to express specifications and programs divide into the following styles: wide-

spectrum languages, narrow-spectrum languages, and languages extended by transformation.  

3.3.1.1 Wide-spectrum languages  
 A wide-spectrum language incorporates a variety of constructs, from high-level specification 

constructs down to low-level, machine-oriented ones, to permit expression of a broad range of styles 
of programs. Further, the intent is that transformation be done incrementally, that is, fragments of a 
specification may be transformed to replace a use of a higher level construct with the use of an 
equivalent, but lower level one. Thus it must be possible to mix constructs from different levels, at 
least to some extent.  

 This has been the goal of the CIP group (Section 2.2.4), who have developed one such language, 
CIP-L; their project is described in [CIP 84]. CIP-L supports the range from specifications using 



algebraically defined data types, predicate logic, nondeterminism, etc., to classical procedural 
programs (variables, assignment, etc.), and even down to the control-oriented level of machine 
programming (labels and jumps). Their transformational developments have spanned all these levels. 
Definitional transformations are used to give semantic meaning to the layers of CIP-L constructs that 
extend from a small kernel for logic and functional programming.  

 Other examples are the SETL language (Section 2.1.1), which incorporates dictions ranging from 
the concrete level of FORTRAN up to the abstract level of set theory; and the V language (Section 
2.3.2), which also has a procedural level as its lowest level, but extends from there to include logic-
oriented descriptions of objects with rules to manipulate those objects, and demons and assertions 
operating over the database of those objects.  

3.3.1.2 Narrow-spectrum languages  
 At the opposite extreme to wide-spectrum languages, narrow-spectrum languages pick some 

relatively narrow style of program or specification description and focus on finding notations and 
manipulations to support the expression and application of transformations within that style.  

 The proliferation of applicative languages are instances of narrow-spectrum languages; they 
admit to easy manipulation and analysis, and while they are limited in the range of programming 
styles that they can conveniently describe, they are capable of encompassing a range from the 
simple, clear structure of specifications to the intertwined structure of applicative programs that 
correspond to efficient procedural algorithms.  

3.3.1.3 Languages extended by transformation 
Sometimes transformation techniques are used to extend a language with notations tailored to the 

task domain. Such is the approach embodied in the Harvard PDS (Program Development System) 
[Cheatham et al 81], a programming support environment to aid the programmer in interactively 
defining the meaning of new task-specific notations. Successive refinements, mostly done by a series 
of transformation steps, establish these definitions, and are recorded by the system for use in 
replaying the refinement on a modified specification. This approach has been applied to the 
construction and maintenance of some sizeable systems.  

  Boyle's TAMPR system (Section 2.1.3) serves a similar purpose for small language extensions.  

3.3.2 Language support for transformations and developments 
The following are illustrations of some of the techniques used in expressing transformations and 

developments.  

3.3.2.1 Replacement rules and pattern matching  
 Many transformations are expressible as rewrite rules, where application of one of these rules 

requires matching the left hand side of the rule, a pattern, with a fragment of the program; if the 
match is successful, the bindings formed in the match are substituted into the right hand side of the 
rule to result in a fragment to replace the matched fragment in the program. Pattern languages of 
varied sophistication have been used to define these rules. Pattern variables that can be matched to 
structures in the program grammar such as sequences or sets of statements, identifiers, arguments 
etc., are frequently used. Not all transformations can be expressed conveniently as replacement rules, 
but rather must be coded procedurally, for example, formal differentiation (Section 3.2.3.2.3).  

3.3.2.2 Representing programming cliches  
 Programming cliches, also referred to as programming paradigms, are standard methods of 

solving programming problems. Some research encodes cliches within transformations, so that 



application of such a transformation results in the installation of its cliched method of problem 
solving, which can then be further transformed as appropriate.  

Research into representing and manipulating cliches has been the keystone of the Programmer's 
Apprentice project [Waters 82]. This project aims to construct an intelligent computer assistant for 
programmers, and as such is an instance of an alternative paradigm for programming that, like 
program transformation, seeks to introduce automation into the programming process. Programming 
cliches are represented in an Artificial Intelligence plan-like manner [Rich 81].  

Smith studies the synthesis of divide-and-conquer algorithms, using program schemes to 
represent and manipulate this cliche [Smith 85].  

3.3.2.3 Development languages  
 Development languages have already been discussed in Section 2.2 on the metaprogramming 

approach, where sizeable developments are represented as programs in a machine-manipulable 
language.  
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